
WCCM V
Fifth World Congress on
Computational Mechanics

July 7-12, 2002, Vienna, Austria
Eds.: H.A. Mang, F.G. Rammerstorfer,

J. Eberhardsteiner

Nonlinear dynamic analysis of shells with the TRIC shell element

J. Argyris

Institute for Computer Applications
University of Stuttgart, D-70579 Stuttgart 80, Germany

M. Papadrakakis, Z. Mouroutis

Institute of Structural Analysis & Seismic Research
National Technical University Athens, Zografou Campus, Athens 15780, Greece

A.G. Papachristidis

4M - VK Civil Engineering Software Inc.
Mykinon 9 & Kifisias, GR-15233 Athens, Greece

Key words: Non-linear shell finite element, dynamic analysis, mass matrix, TRIC element

Abstract. In the present study the implementation of the natural mode method for finite element
analysis is extended to the dynamic analysis, linear and nonlinear, of shell structures by formulating
the kinematically consistent mass matrix of a model three-node multilayered triangular element
(TRIC). Both translational and rotational inertia are included in the mass matrix which is generated
using kinematic and geometric arguments consistent with the assumed natural rigid-body and straining
modes of the element. Subsequently, numerical examples are performed to demonstrate the efficiency
of the formulation and the potential of the natural mode method to deal efficiently with intricate time-
dependent phenomena of shell structures.
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1. Introduction

When faced with the challenge of investigating time-dependent nonlinear phenomena of shell
structures with the finite element method a major constraint arises which is the high computational
cost involved in the simulations. Higher order shell elements have been successfully proposed in the
past for linear analysis. However, the extension of this type of shell elements to the nonlinear range
and especially to time-dependent problems is not straightforward. Isoparametric finite elements based
on higher-order interpolation functions and multiple quadrature loops can prove very expensive and
cumbersome when applied to large and complex multilayered shells.

Hence, the development of a simple plate and shell finite element including transverse shear
deformation, capable of engineering accuracy, competent in the study of intricate nonlinear
phenomena and adaptable to many types of material systems including isotropic, sandwich, laminated,
composite and hybrid structures remains a challenging task. A shell finite element that has been
proved to have all the above-mentioned characteristics in static linear and nonlinear problems is the
TRIC shell element, Argyris [1].

The aim of this paper is to formulate a consistent mass matrix that includes both translational and
rotational inertia in order to test the efficiency of the TRIC element in linear and nonlinear dynamic
problems.

2. The mass matrix

The computation of the elemental mass matrix necesitates the estimation of matrix ω containing the
modal functions. More specifically, the displacement vector u must be expressed as a function of the
natural modes. Then the global elemental mass matrix can be established via
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where α is the transformation matrix from the local natural coordinate system of each element to the
global Cartesian coordinate system and ρ is the density of the material.

The modal matrix ω can be derived by invoking kinematic and geometric arguments. Similarly to
static analysis, the rotational inertia forces resulting from antisymmetric deformation are assumed
uncoupled from the other forces, and as such they are treated independently. The derivation of the part
of the modal matrix that contains the rigid body modes is straightforward and it can be graphically
depicted in Figure 1, Argyris [1].

The second component of the modal matrix is related to the axial straining modes (γtα, γtβ and γtγ) along
the sides of the triangular element. From Figure 2, it can be concluded that the displacements of node
Γ, for example, is given by:
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or:

Figure 1. Rigid body modes of the TRIC shell element

Figure 2. Axial straining mode γtα
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and finally:
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Similar expressions can be derived for the other two nodes leading to the following expressions for the
inplane displacements of the element due to the axial straining modes along the side of the triangle:
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where ζα, ζβ, ζγ, are the area coordinates of the triangular element.

By setting any of the axial straining modes equal to 1 and the others equal to zero the corresponding
modal functions can be obtained.

For the derivation of the expressions of the symmetric and antisymmetric modal functions, the
following expression of the vertical (out of the plane) displacement is used, Argyris [2]:
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where ψsα, ψsβ and ψsγ are the natural symmetric bending modes and ψAα, ψAβ and ψAγ are the natural
antisymmetric bending modes.

Thus, for example, for ψsα=1 and all the other modes equal to 0 equation (12) becomes:
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the expressions for u, v become:
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In a similar way, the expressions of the other symmetric and antisymmetric modal functions can be
deduced. Finally, the expressions for the natural azimuth modes are graphically depicted in Figure 3,
Argyris [1].

Symbolic computation is employed in order to carry out, in a clear way, the tedious but otherwise
straightforward matrix multiplications of Equation 1. Consequently, all integrals are evaluated in an
exact manner using the formula:

)!2(

!!!!21

rqp

rqp
drqp

a +++
=Ω

Ω ∫Ω γβζζζ (16)



John Argyris, Manolis Papadrakakis, Zacharias Mouroutis, Aristidis Papachristidis

6

Figure 3. Natural azimuth straining modes of the TRIC shell element

3. The principle of virtual work in dynamics

The principle of virtual work for static (linear and nonlinear) in terms of the elastic Cartesian stresses
and strains reads:
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where σ, ε denote the stress and elastic strain vectors, respectively; u is the displacement vector; pV, pS
are the distributed body and distributed surface forces, respectively, and R is the vector of the
concentrated forces or moments.
For dynamic analysis, the inertia and damping forces must be included in equation (17). The work
produced by these forces can be written as:
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where µ is the local damping coefficient and r the vector of the nodal displacements.

Equation (17) modified with the introduction of the inertia and damping terms reads for a finite
element e:
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where Ke, Me, Ce and Re(t) are the elemental stiffness, mass, damping matrices and the loading vector
respectively.

4. Numerical examples

Numerical examples are presented to test and verify the proposed mass matrix derived for the TRIC
shell element. The first three examples are linear dynamic problems. The results are compared to those
produced by the commercial program SOFiSTiC for static and dynamic analysis of structures. The
fourth example is the nonlinear analysis of the ‘snap through’ of a cylindrical shell.

4.1. Plate with constant distributed load.
The first example examines the dynamic response of a plate which is fixed along one of its sides under
a constant distributed vertical load.
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The geometry of this shell example is shown in Figure 4. The width of this cantilever plate is 3m and
the length is 4m. The thickness of the plate is considered to be 40cm. The modulus of elasticity is
taken E=30000000kPa and the Poisson ratio equal to 0.2. The constant over time distributed load is
equal to 40kN/m.

Figure 4. Plate with constant distributed load

The plate is divided to 96 elements with 63 nodes as shown in Figure 4. The results that were produced
by the TRIC element are practically identical to those produced by the SOFiSTiC program (see Figure
5) proving the accuracy of the proposed mass matrix formulation.
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Figure 5. Time history of the displacement of the edge of the plate
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4.2. Plate with time dependent distributed load.

The same plate as in the previous example is solved with distributed load that diminishes linearly with
time and becomes zero at time t=0.5sec.The results are shown in Figure 6 and are again coincident to
those produced by SOFiSTiC.
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Figure 6. Time history of the displacement of the edge of the plate

4.3. Shallow shell with concentrated load.

The next test example is a shallow shell with a concentrated load in the middle. Due to the symmetry
of the structure along both axes only one quarter of the shell is examined (Figure 7). The concentrated
load is equal to 1kN at time t=0 s and remains constant until time t=0.05 s when it becomes zero. The
time step used is t=0.0005 s and the dynamic analysis is performed until time t=0.1 s. The results of
the analysis are shown in Figure 8 where the performance of the TRIC element is compared with the
quadrilateral shell elements of the commercial codes SOFiSTiC and NASTRAN. By comparing the
results of the two commercial programs and the TRIC element it can be concluded that the results
produced by the TRIC element are very satisfactory.

Figure 7. Shallow shell with concentrated load
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Comparison Tric - SOFiSTiC - NASTRAN
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Figure 8. Time history of the displacement of the middle of the shell

4.4. ‘Snap through’ of a cylindrical shell under a concentrated vertex load.
The last test example proves the efficiency of the TRIC element in nonlinear dynamic analysis. It is an
example investigated in Ramm [3] and it consists of a 60 degree sector of a cylinder of height h=5 m,
radius R=5 m and thickness t=0.1 m, as shown in Figure 9. The Young’s modulus is E=210 GPa,
Poisson ratio ν=0.25 and density 104 kg/m3. The two straight edges of the shell are simply supported,
while the two curved edges are free. A concentrated force F is applied at the shell’s apex. This force
linearly increases from 0 to 50000 kN in 0.2 s, then is held constant at that value. Due to the symmetry
of the problem, a quarter of the shell is modeled. The time step size was selected as t=10-3 s and the
time integration method used is the Newton-Raphson method. In Figure 10 the shell apex
displacement is plotted with time while in Figure 11 snap shots of the shell’s deformation are shown.
The results are very similar to those reported in the literature and it is very interesting to point out that
the Newton-Raphson method does not diverge during the violent vibrations after the ‘snap through’.

Figure 9. Cylindrical shell under a concentrated vertex load
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Figure 10. Shell apex displacement

Figure 11. Snap shots at times t=0.050s, t=0.100s, t=0.150s, t=0.160s and t=0.165s
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